Facebook Instagram Youtube Twitter

Mass Attenuation Coefficient

Mass Attenuation Coefficient

When characterizing an absorbing material, we can sometimes use the mass attenuation coefficient.  The mass attenuation coefficient is defined as the ratio of the linear attenuation coefficient and absorber density (μ/ρ). The following equation can then describe the attenuation of gamma radiation:

I=I0.e-(μ/ρ).ρl

, where ρ is the material density, (μ/ρ) is the mass attenuation coefficient, and ρ.l is the mass thickness. The measurement unit was used for the mass attenuation coefficient cm2g-1. For intermediate energies, the Compton scattering dominates, and different absorbers have approximately equal mass attenuation coefficients. This is because the cross-section of Compton scattering is proportional to the Z (atomic number), and therefore the coefficient is proportional to the material density ρ. At small gamma-ray energy values or at high gamma-ray energy values, where the coefficient is proportional to higher powers of the atomic number Z (for photoelectric effect σf ~ Z5; for pair production σp ~ Z2), the attenuation coefficient μ is not a constant.

See previous:

Half Value Layer

See above:

Gamma Ray Attenuation